

The 600,000-year palaeoenvironmental record from Chew Bahir, Ethiopia: testing hypotheses of climate change and human origins

Henry Lamb¹, Asfawossen Asrat², Christopher Bronk Ramsey³, Andrew Cohen⁴, Melissa Chapot¹, Sarah Davies¹, Jonathan Dean⁵, Alan Deino⁶, Walter Düsing⁷, Verena Foerster⁸, Matt Grove⁹, Annett Junginger¹⁰, Christine Lane¹¹, Melanie Leng¹², Rachel Lupien¹³, Emma Pearson¹⁴, Helen Roberts¹, James Russell¹³, Frank Schäbitz⁸, Martin Trauth⁷, Céline Vidal¹¹

¹Aberystwyth University, Aberystwyth, United Kingdom. ²Addis Ababa University, Addis Ababa, Ethiopia. ³Oxford University, Oxford, United Kingdom. ⁴University of Arizona, Tucson, USA. ⁵University of Hull, Hull, United Kingdom. ⁶Berkeley Geochronology Center, Berkeley, USA. ⁷University of Potsdam, Potsdam, Germany. ⁸University of Cologne, Cologne, Germany. ⁹University of Liverpool, Liverpool, United Kingdom. ¹⁰Eberhard Karls University, Tübingen, Germany. ¹¹University of Cambridge, Cambridge, United Kingdom. ¹²British Geological Survey, Keyworth, United Kingdom. ¹³Brown University, Providence, USA. ¹⁴Newcastle University, Newcastle-upon-Tyne, United Kingdom

Abstract

Most current hypotheses of climatic influence on human physical and cultural evolution focus on the role of climatic variability in selecting for behavioural flexibility and cognitive development. Those changes are thought to have allowed selected populations to expand geographically and exploit a wider range of habitats, prey and material resources. Similarly, abrupt climatic transitions may have caused differential survival among and within human populations, depending on their vulnerability to climatic extremes, with water resources being especially critical.

Located close to the Omo Kibish, site of the earliest known *Homo sapiens* fossils in east Africa, Chew Bahir, a playa lake in the south Ethiopian Rift, has yielded a 290 m-long core record that spans the last ~600,000 years. That time interval covers the entire history of modern human origins and dispersal, encompassing a number of significant behavioural innovations. With a high temporal resolution of up to tens of years, geochemical and biological indicators from the Chew Bahir core allow close examination of changing amplitude and frequency of past hydroclimatic variation and the rapidity of climatic change. By analysis of the core data across critical transitions in the archaeological record, we aim to show how the Chew Bahir record can contribute to a developing understanding of the consequences of climatic change for early human populations.